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The motion of a viscous incompressible liquid between two parallel disks, moving
towards each other or in opposite directions, is considered. The description of possible
conditions of motion is based on the exact solution of the Navier–Stokes equations.
Both stationary and transient cases have been considered. The stability of the motion
is analysed for different initial perturbations. Different types of stability were found
according to whether the disks moved towards or away from each other.

1. Introduction
There is a large class of processes which can be considered from the mathematical

point of view as the motion of liquid between two parallel disks, moving towards
each other or in opposite directions with a constant velocity. These include such
processes as the motion of liquid through a hydraulic pump, and the motion of
underground water can also be described with a help of the current model. In figure 1
these two applications are presented. It should be noted that in spite of the different
types of hydrodynamical problem at first sight, the mathematical descriptions are
the same. So it is possible to describe the water motion in a hydraulic pump (when
impermeable disks are moving toward or apart each other) similarly to the motion of
underground water (when permeable disks are fixed). The second case refers to water
motion through porous media. These problems are interesting because some of their
solutions, though analytically obtained, can be confirmed by experiments.

For example, place two parallel disks in water and start moving them towards each
other or in opposite directions, assuming the size of the disks to be much larger
than the distance between them. Even with a qualitative assessment we can see that
when the disks are approaching each other the effort required is smaller than that for
separation when the disks are moving apart. This can be explained by the different
character of the liquid motion: when the disks are approaching it is potential; when
the disks are moving apart it is rotational.

This work deals with a description of the types of possible instability of such
motion. Craik & Criminale (1986) described a procedure for finding classes of exact
solutions of the Navier–Stokes equations. These solutions consist of a ‘basic flow’ with
spatially uniform rates of strain and a ‘disturbance’ of a planar form: the disturbance
is continuously distorted by the basic flow but nevertheless remains of planar form
at all times. A somewhat similar formulation was given by Lagnado, Phan-Thien &
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Figure 1. Different applications of the model: (a) moving impermeable disks and
(b) fixed permeable disks.

Leal (1984), but was restricted to two-dimensional basic flows and the authors were
unaware that their linearized approximation is in fact an exact solution for single
plane-wave modes.

The aims of this paper are twofold. The first is to generalize the results of Craik
(1989) in a case of plane-wave superposition. The second is to find the possible forms
of the jet solutions which are generated as a result of the instability development.

The paper is organized as follows. In § 2 the mathematical formulation of the
problem is described. Section 3 contains a method of analysis the problem, while
results and discussion are presented in § 4. The paper ends with some concluding
remarks.

2. Formulation of the problem
Consider the motion of viscous incompressible liquid induced by two parallel disks

moving towards each other in the case when h � l (where h is the distance between
the disks, and l is the length of the disks). Let us assume that the horizontal velocity
does not depend on the vertical coordinate whereas the vertical velocity depends
linearly on the distance between the disks. In this case the Navier–Stokes equations
have the following form (Craik 1989; Craik & Criminale 1986; Lagnado et al. 1984):

∂u

∂x
+
∂v

∂y
= 2q, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν∆u, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ν∆v, (2.3)

where the velocity components are represented as

vx = u(x, y, t), vy = v(x, y, t), vz = −2qz, p = p(x, y, t)− 2q2z2. (2.4)

Furthermore, p is the pressure divided by the liquid density, and q is the relative
velocity of the disks, assumed here to be constant. It should be noted also that the
equation for the vertical velocity coordinate vz is identically equal to zero.



Viscous flow between two moving parallel disks 211

3. Method of analysis
For convenience of analysis let us select the potential component from the hori-

zontal components of the velocity and introduce the flow function:

u = qx+
∂ψ

∂y
, (3.1)

v = qy − ∂ψ

∂x
, (3.2)

where ψ is the stream function. Now equation (2.1) is satisfied identically, and
equations (2.2) and (2.3) together, after elimination of the pressure and introduction
of the vorticity, will give the equations of motion in the following form:

∂ω

∂t
+ {ψ,ω} = −q

(
∂

∂y
(yω) +

∂

∂x
(xω)

)
+ ν∆ω, (3.3)

where ω is the vorticity:

ω =
∂u

∂y
− ∂v

∂x
= ∆ψ, (3.4)

and {ψ,ω} denotes the Poisson brackets:

{ψ,ω} =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
. (3.5)

One of the solutions of equation (3.3) is ψ = 0, which corresponds to liquid potential
motion, known as the motion near the stagnation point (other solutions for ψ are
given in §§ 4.2 and 4.3). Following the work of Craik (1989), to investigate the stability
of this solution let us consider the periodical one-dimensional perturbation δψ. This
perturbation is expressed by the following equation:

δψ = k−2(t)A(t) cos(k(t)x). (3.6)

To analyse the change of the vorticity in the course of time we plug the stream
function δψ (3.6) into (3.3) and equate groups of items with the same x-powers to
obtain the following system of nonlinear equations:

∂k

∂t
= −qk, (3.7)

∂A

∂t
= −qA− νAk2. (3.8)

After solving the linear equation (3.7) the result is put into (3.8) and then the
general solution is

A(t) = A(0) exp

(
−qt+

νk2(0)

2q
(−1 + e−2qt)

)
, (3.9)

k(t) = k(0) exp(−qt), (3.10)

where k(0), A(0) are free constants, determining the amplitude and wavelength at the
initial point of time. The sign of q in equation (3.9) determines the stability of the
solution ψ = 0. When q > 0, the solution is stable, the amplitude A is decreasing;
otherwise, the solution is unstable, the amplitude A is increasing. However, for
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Figure 2. Amplitude for q < 0 (solid) and q > 0 (dashed).

q < 0 the solution is unstable only until t = (1/(−2q)) ln |q/(νk2(0))|, after which the
amplitude decreases rapidly, owing to dissipation (figure 2).

4. Results and discussion
4.1. Stability analysis

Let us consider the case when the flow function perturbation has the following form:

δψ =

N∑
i=1

Ai(t)

k2
i (t)

cos(ki1(t)x+ ki2(t)y), (4.1)

provided that k2
i1 + k2

i2 ≡ k2 ∀i.
Lemma 1. If k2

i1 + k2
i2 ≡ k2 ∀i then equation (4.1) is the exact solution of equation

(3.3), with k(t), Ai(t) defined from expression (3.9).

Proof. The proof is based on the reduction of (3.3) to a linear equation (where the
principle of superposition is valid). The property of the Poisson brackets is {ψ, ψ} ≡ 0.
We find the vorticity (since k2

i1 + k2
i2 ≡ k2 ∀i, it is possible to carry out the summation

in (4.1)) from:

ω ≡ ∆ψ = −
N∑
i=1

Ai cos(ki1(t)x+ ki2(t)y) ≡ −k2(t)ψ; (4.2)

k2(t) does not depend on the spatial coordinate. Therefore

{ψ,ω} = {ψ,−k2(t)ψ} = −k2(t){ψ, ψ} = 0, (4.3)

which proves the lemma.

Remark 1. If q > 0, the solution is stable, with both the amplitude and the wave-
number k decreasing in the course of time. Otherwise if q < 0, the solution is unstable.
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However, the amplitude increases until t =
∑N

i=1(1/(−2q)) ln |q/(νk2(0))|, after which
owing to dissipation it decreases rapidly. The wavenumber k increases in the course
of time. The new and interesting fact which has been discovered in the course of this
research is that the wavenumber k, corresponding to the time t =

∑N
i=1(1/(−2q)) ln |q/

(νk2(0))|, is not dependent on the initial conditions and is equal to k =
√−q/ν.

It should be noted that in each of the cases investigated q > 0 corresponds to the
situation when the disks are moving towards each other and q < 0 to the situation
when the disks are moving apart.

Remark 2. Note that if in equation (4.1) N = 1, then the results obtained by Craik
(1989) are retrieved. This case corresponds to a perturbation in a form of one plane
wave. The case when N > 1 corresponds to plane-wave superposition, which can ( for
special conditions for wavenumber and amplitude (Chandrasekhar 1997)) reduce to the
appearance of different space structures.

4.2. Stationary solutions in the form of jets

So far, the solution ψ = 0, corresponding to the liquid motion near a stagnation
point, has been considered. It is also relevant to find and examine other stationary
solutions, such as jets. We consider the flow function in the following form:

ψ = xF(y) + φ(y). (4.4)

In this case (3.3) takes the following form:

φxωy − φyωx = −q(2ω + yωy + xωx) + ν∆ω, (4.5)

and since

ω = xF ′′(y) + φ′′(y), (4.6)

equation (4.5) can be rewritten as

F(xF ′′′ + φ′′′)−(xF ′ − φ′)F ′′=−q(2(xF ′′ + φ′′)+y(xF ′′′ + φ′′′) + xF ′′)+ ν(xF iv + φiv),

(4.7)

where a prime denotes a derivative with respect to the argument (here y) and a
superscript iv denotes the fourth derivative. Equating groups of terms with the same
x-powers it is possible to obtain the following system:

FF ′′′ − F ′F ′′ = −q(2F ′′ + yF ′′′ + F ′′) + νF iv, (4.8)

Fφ′′′ + φ′F ′′ = −q(2φ′′ + yφ′′′) + νφiv. (4.9)

We consider the particular case when the analytical solution of equation (4.8) is
F = ay. In this case (4.9) will take the following form:

ayφ′′′ + q(2φ′′ + yφ′′′) = νφiv. (4.10)

After some mathematical transformations and integrating twice, we obtain the
following equation:

νφ′′ = (a+ q)yφ′ − 2aφ, (4.11)

which has the form of Hermite’s differential equation when two conditions are
satisfied: (a+ q)/ν = 2 and a/ν is a non-negative integer. The solutions of this
equation have the following form:

φ =
dn

dyn

(
A exp

(
q

(3 + n)ν
y2

))
, (4.12)
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where the relation between a and q is

a = −1 + n

3 + n
q, n ∈ [0,∞]. (4.13)

Thus the solutions of equation (3.3) can be written as

ψ = −1 + n

3 + n
qxy +

dn

dyn

(
A exp

(
q

(3 + n)ν
y2

))
. (4.14)

In equation (4.14), the first term denotes the liquid motion corresponding to the
potential flow component, and the second term represents the jet behaviour (non-
potential flow component). Since q < 0, n > 0, ν > 0, it can be seen that this second
term approaches zero for y → ±∞.

4.3. Transient solution in the form of logarithmic spiral jets

As well as the above stationary solutions for jets, it is also possible to obtain solutions
in the form of rotating spiral jets. In the context of the present paper let us rewrite
(3.3) in the cylindrical coordinate system:(

∂

∂t
− qr ∂

∂r

)
(r2ω) +

∂ψ

∂ϕ
r
∂ω

∂r
− ∂ω

∂ϕ
r
∂ψ

∂r
= ν

(
∂2ω

∂ϕ2
+ r

∂

∂r
r
∂ω

∂r

)
, (4.15)

where

ω = ∆ψ =
1

r2

∂2

∂ϕ2
+

1

r

∂

∂r

1

r

∂

∂r
. (4.16)

Then

ψ = −4νϕ+ F(qt+ ln r + nϕ). (4.17)

The expression for the function F is

−4νF ′ + nF ′F ′ + ν(1 + n2)F ′′′ = const, (4.18)

where the derivation takes an argument ξ = qt+ ln r + nϕ.
If we introduce the variable U = F ′, we obtain

U ′′ − 4

1 + n2
U +

n

ν(1 + n2)
U2 = const, (4.19)

(U ′)2

2
− 2U2

1 + n2
+

nU3

3ν(1 + n2)
= c1U + c2. (4.20)

It should be noted that periodic solutions for the function U should exist, and the
period for ξ should be equal to ξN = ξ + 2πNn, where N ∈ [0,∞]. Now it is possible
to write

(U ′)2

2
= c2 + c1U +

2

1 + n2
U2 − n

3ν(1 + n2)
U3. (4.21)

The expressions for the velocity components are

vr = −qr +
4ν

r
+
n

r
U(qt+ ln r + nϕ), (4.22)

vϕ = −1

r
U(qt+ ln r + nϕ), (4.23)

vz = 2qz. (4.24)
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The three-dimensional non-stationary solution for logarithmic spiral jets is obtained,
albeit as a function of the newly introduced variable U = F ′, which has to be
determined numerically. Note that for certain values of ν and n a solution of equation
(4.21) can be found as an elliptic integral of the second type.

The case when q = 0 was considered by Netreba (1988).
Finally, we found as a result of the investigation that the structures rotate propor-

tionally to the relative velocity of the disks.

5. Conclusions
In this paper, we have considered viscous flow between two parallel disks. These

disks can move towards each other or in opposite directions. The liquid flow is
described by the Navier–Stokes equations, for which some analytical solutions have
been obtained. Furthermore, an instability analysis has been performed by assuming
a perturbation in the form of a superposition of plane waves.

When the disks are moving towards each other, the liquid flow has a laminar
behaviour. On the other hand, when the disks are moving apart from each other the
results were as follows.

(a) The solution of the Navier–Stokes equations near the stagnation point is
obtained. For this specific case, an instability is found, but this instability disappears
after a certain time interval. It has been proved that with the evolution of perturbation
of a certain type, wave structures with different configurations are formed.

(b) Stationary solutions in the form of jets were found.
(c) Transient solutions in the form of logarithmic spiral jets were found.
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